THE EFFECTS OF GAMMA-RAY ON THE MECHANICAL PROPERTIES OF Zr-BASED BULK METALLIC GLASS

نویسندگان

  • L. H. Shah
  • S. Nagata
  • T. Shikama
چکیده

The effect of gamma-ray irradiation on the mechanical properties of Zr55Ni5Al10Cu30 bulk metallic glass (BMG) was investigated. The samples were irradiated with a gamma-ray dose up to 2090.24 kGy prior to mechanical property investigations. Vickers hardness test, nano-indentation test as well as speed of sound measurements in order to calculate the material’s elastic moduli were conducted. An x-ray diffractogram device was also utilized to observe the BMG’s devitrification behavior. Results confirm that no significant changes were observed for any of the samples. XRD spectra of irradiated BMGs also show uniform broad peaks, indicating an amorphous structure inside the sample. This result indicates that a gamma-ray irradiation dose of up to 2090.24 kGy does not change the mechanical properties and the microstructure of the material, thus making it a good future structural candidate for gamma-ray rich environments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructure and mechanical properties of electron beam weld joints of a Zr41Ti14Cu12Ni10Be23 bulk metallic glass with Zr

The electron beam welding technique was used to join Zr41Ti14Cu12Ni10Be23 bulk metallic glass (BMG) to crystalline pure Zr. Compositional, microstructural, and mechanical property variations across the welded interface were evaluated. It is shown that a crystalline layer develops close to the welding interface. Transmission electron microscopy of this layer indicates the crystalline phase to be...

متن کامل

The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions

In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-...

متن کامل

Influences of Sample Preparation on Nanoindentation Behavior of a Zr-Based Bulk Metallic Glass

Influences of two different sample preparation methods, mechanical polishing and plunge cutting, on nanoindentation behavior of a Zr-based bulk metallic glass were studied. Mechanical polishing suppresses the serrated flow but promotes the creep. In contrast, plunge cutting promotes the serrated flow but suppresses the creep. However, hardness and elastic modulus obtained from these two methods...

متن کامل

Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions

Results are presented for a ductile metal reinforced bulk metallic glass matrix composite based on glass forming compositions in the Zr-Ti-Cu-Ni-Be system. Primary dendrite growth and solute partitioning in the molten state yields a microstructure consisting of a ductile crystalline Ti-Zr-Nb beta phase, with bcc structure, in a Zr-Ti-Nb-Cu-Ni-Be bulk metallic glass matrix. Under unconstrained m...

متن کامل

Mechanical Behavior of Zr-Based Metallic Glasses and Their Nanocomposites

In the present chapter, results of our recent investigations on the role of gallium (Ga) on the aluminum (Al) site in Zr69.5Al7.5-xGaxCu12Ni11 metallic glass (MG) composition have been discussed. The material tailoring and cooling rate effects on the mechanical behavior of Zr-based metallic glasses and their nanocomposites have been studied. The substitution of Ga on the Al site in Zr–Al–Cu–Ni ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014